Implication of Mn concentration on the properties of cerium oxide thin films

Authors

  • Suresh R Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India Author
  • Thirumal Valavan K Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India Author
  • Justin Paul M Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India Author
  • Indira Priyadharshini T Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India Author

DOI:

https://doi.org/10.34256/nnxt2011

Keywords:

MDC, Cubic Fluorite, Oxygen vacancy, PL

Abstract

Uniform and adhesive Manganese doped cerium oxide (MDC) films are successfully deposited by Nebulizer Spray Pyrolysis (NSP) technique. The MDC films are characterized by XRD, FT-IR, UV-ViS, PL and I-V analysis.  X-ray diffraction peaks reveal the single-phase polycrystalline cubic fluorite structure with preferential orientation along (2 0 0) direction. The broad bands observed at 695, 659, 538 and 517 cm-1 are due to the envelope of (Ce=O) symmetric, asymmetric terminal stretching and phonon band of metal oxide (Ce-O) network from FT-IR spectra. The transmittance decreases with Mn concentration due to the increase in scattering of photon by crystal defects created by doping and lower ionic size of Mn. The electrons in the outer orbits have travelled to the higher energy levels and have occupied vacant positions in energy bands. Some of the NBE emission and green emission peaks are vanished at higher doping level of Mn. The occurrence of a strong and broad blue emission peak at 15% for MDC films has been confirmed from emission spectra.

References

Bhosale, A., Shinde, P., Tarwal, N., Kadam, P., Mali, S., & Patil, P. (2010). Synthesis and characterization of spray pyrolyzed nanocrystalline CeO2–SiO2 thin films as passive counter electrodes. Solar Energy Materials and Solar Cells, 94(5). https://doi.org/https://doi.org/10.1016/j.solmat.2009.12.024

Chang, P.-C., Fan, Z., Chien, C.-J., Stichtenoth, D., Ronning, C., & Lu, J. G. (2006). High-performance ZnO nanowire field effect transistors. Applied Physics Letters, 89(13). https://doi.org/https://doi.org/10.1063/1.2357013

Chin, S.-F., Pang, S.-C., & Anderson, M. A. (2002). Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors. Journal of The Electrochemical Society, 149(4). https://doi.org/https://doi.org/10.1149/1.1453406

Chourashiya, M., Pawar, S., & Jadhav, L. (2008). Synthesis and characterization of Gd0.1Ce0.9O1.95 thin films by spray pyrolysis technique. Applied Surface Science, 254(11). https://doi.org/https://doi.org/10.1016/j.apsusc.2007.11.032

Fang, W.-C., Chen, K.-H., & Chen, L.-C. (2007). Superior capacitive property of RuO2nanoparticles on carbon nanotubes incorporated with nitrogen. Nanotechnology, 18(48). https://doi.org/https://doi.org/10.1088/0957-4484/18/48/485716

Ghodsi, F., Tepehan, F., & Tepehan, G. (2008). Optical and structural properties of sol–gel made Ce/Ti/Zr mixed oxide thin films as transparent counter electrode for electrochromic devices. Optical Materials, 31(1). https://doi.org/https://doi.org/10.1016/j.optmat.2008.01.014

Giardini Guidoni, A., Flamini, C., Varsano, F., Ricci, M., Teghil, R., Marotta, V., & Di Palma, T. (2000). Ablation of transition metal oxides by different laser pulse duration and thin films deposition. Applied Surface Science, 154-155. https://doi.org/https://doi.org/10.1016/s0169-4332(99)00397-9

Kundu, S., Sutradhar, N., Thangamuthu, R., Subramanian, B., Panda, A. B., & Jayachandran, M. (2012). Fabrication of catalytically active nanocrystalline samarium (Sm)-doped cerium oxide (CeO2) thin films using electron beam evaporation. Journal of Nanoparticle Research, 14(8). https://doi.org/https://doi.org/10.1007/s11051-012-1040-0

Liu, H., Yang, J., Zhang, Y., Wang, Y., & Wei, M. (2008). Ferromagnetism and exchange bias in Fe-doped ZnO nanocrystals. Materials Chemistry and Physics, 112(3). https://doi.org/https://doi.org/10.1016/j.matchemphys.2008.07.004

Liu, Y., Wang, T., Sun, X., Fang, Q., Lv, Q., Song, X., & Sun, Z. (2011). Structural and photoluminescent properties of Ni doped ZnO nanorod arrays prepared by hydrothermal method. Applied Surface Science, 257(15). https://doi.org/https://doi.org/10.1016/j.apsusc.2011.02.074

Messaoudi, B., Joiret, S., Keddam, M., & Takenouti, H. (2001). Anodic behaviour of manganese in alkaline medium. Electrochimica Acta, 46(16). https://doi.org/https://doi.org/10.1016/s0013-4686(01)00449-2

Mustafa, F. (2013). Optical properties of NaI doped polyvinyl alcohol films. Physical Sciences Research International, 1, 1-9.

Nakayama, M., Kanaya, T., & Inoue, R. (2007). Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor. Electrochemistry Communications, 9(5). https://doi.org/https://doi.org/10.1016/j.elecom.2007.01.021

Patil, P. S. (1999). Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 59(3). https://doi.org/https://doi.org/10.1016/s0254-0584(99)00049-8

Prasad, K. R., & Miura, N. (2004). Polyaniline-MnO[sub 2] Composite Electrode for High Energy Density Electrochemical Capacitor. Electrochemical and Solid-State Letters, 7(11). https://doi.org/https://doi.org/10.1149/1.1805504

Smirniotis, P. G., Sreekanth, P. M., Peña, D. A., & Jenkins, R. G. (2006). Manganese Oxide Catalysts Supported on TiO2, Al2O3, and SiO2: A Comparison for Low-Temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 45(19). https://doi.org/https://doi.org/10.1021/ie060484t

Tashiro, J., Sasaki, A., Akiba, S., Satoh, S., Watanabe, T., Funakubo, H., & Yoshimoto, M. (2002). Room-temperature epitaxial growth of indium tin oxide thin films on Si substrates with an epitaxial CeO2 ultrathin buffer. Thin Solid Films, 415(1-2). https://doi.org/https://doi.org/10.1016/s0040-6090(02)00623-5

Tsunekawa, S., Wang, J.-T., Kawazoe, Y., & Kasuya, A. (2003). Blueshifts in the ultraviolet absorption spectra of cerium oxide nanocrystallites. Journal of Applied Physics, 94(5). https://doi.org/https://doi.org/10.1063/1.1600520

Wang, G., Mu, Q., Chen, T., & Wang, Y. (2010). Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. Journal of Alloys and Compounds, 493(1-2). https://doi.org/https://doi.org/10.1016/j.jallcom.2009.12.053

Yakuphanoglu, F., Iligan, S., Caglar, Y., & Caglar, M. (2007). The determination of the optical band and optical constants of non-crystalline and crystalline ZnO thin films deposited by spray pyrolysis. Journal of Optoelectronics and Advanced Materials, 9, 2180-2185.

Yoshino, T. (2003). Characterization of nano-structured thin films of electrodeposited Ce–Co mixed oxides for EC devices. Solid State Ionics, 165(1-4). https://doi.org/https://doi.org/10.1016/j.ssi.2003.08.024

Zhitomirsky, I., & Petric, A. (1999). Electrolytic and electrophoretic deposition of CeO2 films. Materials Letters, 40(6). https://doi.org/https://doi.org/10.1016/s0167-577x(99)00087-7

Downloads

Published

2020-11-08

How to Cite

R, S., K, T. V., M, J. P., & T, I. P. (2020). Implication of Mn concentration on the properties of cerium oxide thin films. NanoNEXT, 1(1), 1-9. https://doi.org/10.34256/nnxt2011